Poisson-Lie Sigma Models on Drinfel'd double
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F12%3A00199204" target="_blank" >RIV/68407700:21340/12:00199204 - isvavai.cz</a>
Result on the web
<a href="http://www.dml.cz/handle/10338.dmlcz/143116" target="_blank" >http://www.dml.cz/handle/10338.dmlcz/143116</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5817/AM2012-5-423" target="_blank" >10.5817/AM2012-5-423</a>
Alternative languages
Result language
angličtina
Original language name
Poisson-Lie Sigma Models on Drinfel'd double
Original language description
Poisson sigma models represent an interesting use of Poisson manifolds for the construction of a classical field theory. Their definition in the language of fibre bundles is shown and the corresponding field equations are derived using a coordinate independent variational principle. The elegant form of equations of motion for so called Poisson-Lie groups is derived. Construction of the Poisson-Lie group corresponding to a given Lie bialgebra is widely known only for coboundary Lie bialgebras. Using theadjoint representation of Lie group and Drinfel'd double we show that Poisson-Lie group can be constructed for general Lie bialgebra.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC527" target="_blank" >LC527: Center for Particle Physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archivum Mathematicum
ISSN
0044-8753
e-ISSN
—
Volume of the periodical
48
Issue of the periodical within the volume
5
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
25
Pages from-to
423-447
UT code for WoS article
—
EID of the result in the Scopus database
—