Model-assisted evolutionary optimization with fixed evaluation batch size
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F12%3A00200871" target="_blank" >RIV/68407700:21340/12:00200871 - isvavai.cz</a>
Result on the web
<a href="http://km.fjfi.cvut.cz/ddny/" target="_blank" >http://km.fjfi.cvut.cz/ddny/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Model-assisted evolutionary optimization with fixed evaluation batch size
Original language description
Some black-box optimization problems involve long-running simulations or expensive experiments as the goal function. To enable use of evolutionary algorithms, surrogate models are used to reduce the number of function evaluations. In adaptive model building strategies, some individuals are selected for true function evaluation in order to improve the model. When the experiment or simulation requires a fixed size batch of solutions to evaluate, traditional selection strategies either cannot be used or couple the batch size with the EA generation size. We propose a queue based method for model-assisted optimization using active learning of a kriging model, where individuals are selected based on the model predictor error estimate. The method was tested on standard benchmark problems and the effects of batch size was studied. Results indicate that the proposed method significantly reduces the number of true fitness evaluation compared to a traditional EA.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Doktorandské dny 2012
ISBN
978-80-01-05138-2
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
105-114
Publisher name
Česká technika - nakladatelství ČVUT
Place of publication
Praha
Event location
Praha
Event date
Nov 16, 2012
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—