One-Dimensional Anisotropic Surface Diffusion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F12%3A00202507" target="_blank" >RIV/68407700:21340/12:00202507 - isvavai.cz</a>
Result on the web
<a href="http://www.kurims.kyoto-u.ac.jp/~kenkyubu/bessatsu.html" target="_blank" >http://www.kurims.kyoto-u.ac.jp/~kenkyubu/bessatsu.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
One-Dimensional Anisotropic Surface Diffusion
Original language description
This contribution deals with the motion law of anisotropic surface diffusion of graphs which is an important concept in epitaxial growth. The numerical scheme is based on the method of lines where the spatial derivatives are approximated by finite differences. We implement the adaptive Runge-Kutta-Merson method for solving the semi-discrete scheme. Finally, we show computational results with various anisotropy settings.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
RIMS Kokyuroku
ISSN
1880-2818
e-ISSN
—
Volume of the periodical
B35
Issue of the periodical within the volume
—
Country of publishing house
JP - JAPAN
Number of pages
10
Pages from-to
115-124
UT code for WoS article
—
EID of the result in the Scopus database
—