A symmetry preserving dissipative artificial viscosity in r-z geometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F14%3A00218883" target="_blank" >RIV/68407700:21340/14:00218883 - isvavai.cz</a>
Result on the web
<a href="http://onlinelibrary.wiley.com/doi/10.1002/fld.3926/full" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1002/fld.3926/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/fld.3926" target="_blank" >10.1002/fld.3926</a>
Alternative languages
Result language
angličtina
Original language name
A symmetry preserving dissipative artificial viscosity in r-z geometry
Original language description
We present a novel artificial viscosity for staggered Lagrangian schemes in 2D axi-symmetric r-z geometry on logically rectangular grids. The suggested viscous force is dissipative by construction, conserves both components of momentum, and preserves spherical symmetry on an equiangular polar grid. This method turns out to be robust and performs well for spherically symmetric problems on various grid types (symmetric, perturbed polar, rectangular), without any need for tinkering with problem-dependent or grid-dependent parameters. The results are compared with the outcome of the area-weighted approach using the popular tensor viscosity by Campbell and Shashkov.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GPP201%2F12%2FP554" target="_blank" >GPP201/12/P554: Advanced Lagrangian Methods for Computational Hydrodynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal for Numerical Methods in Fluids
ISSN
0271-2091
e-ISSN
—
Volume of the periodical
76
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
185-198
UT code for WoS article
000340509200004
EID of the result in the Scopus database
—