Spectral asymptotics of a strong delta ' interaction supported by a surface
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F14%3A00223485" target="_blank" >RIV/68407700:21340/14:00223485 - isvavai.cz</a>
Alternative codes found
RIV/61389005:_____/14:00433178
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0375960114005866" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0375960114005866</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physleta.2014.06.017" target="_blank" >10.1016/j.physleta.2014.06.017</a>
Alternative languages
Result language
angličtina
Original language name
Spectral asymptotics of a strong delta ' interaction supported by a surface
Original language description
We derive asymptotic expansion for the spectrum of Hamiltonians with a strong attractive delta' interaction supported by a smooth surface in R-3, either infinite and asymptotically planar, or compact and closed. Its second term is found to be determinedby a Schrodinger type operator with an effective potential expressed in terms of the interaction support curvatures. (C) 2014 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorous Methods in Quantum Dynamics: Geometry and Magnetic Fields</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physics Letters A
ISSN
0375-9601
e-ISSN
—
Volume of the periodical
378
Issue of the periodical within the volume
30-31
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
5
Pages from-to
2091-2095
UT code for WoS article
000339697600023
EID of the result in the Scopus database
—