Spectral asymptotics for a delta' interaction supported by an infinite curve
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F14%3A00223622" target="_blank" >RIV/68407700:21340/14:00223622 - isvavai.cz</a>
Result on the web
<a href="http://www.worldscientific.com/worldscibooks/10.1142/9250" target="_blank" >http://www.worldscientific.com/worldscibooks/10.1142/9250</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Spectral asymptotics for a delta' interaction supported by an infinite curve
Original language description
In this paper we consider a generalized operator describing an attractive delta' interaction in a strong coupling limit. Delta' interaction is characterized by a coupling parameter and it is supported by a C4-smooth infinite asymptotically straight curvewithout self-intersections. It is shown that in the strong coupling limit the spectrum behave as -4/beta + mu(j) , where mu(j) is the j-th eigenvalue of the one-dimensional Schrödinger operator with effective potential depending on the curvature of theinteraction support.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Mathematical Results in Quantum Mechanics: Proceedings of the QMath12 Conference
ISBN
978-981-4618-13-7
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
259-265
Publisher name
World Scientific
Place of publication
Singapore
Event location
Berlin
Event date
Sep 10, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—