Role of information theoretic uncertainty relations in quantum theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F15%3A00231151" target="_blank" >RIV/68407700:21340/15:00231151 - isvavai.cz</a>
Result on the web
<a href="http://ac.els-cdn.com/S0003491615000342/1-s2.0-S0003491615000342-main.pdf?_tid=01020544-4fe1-11e5-99ab-00000aacb360&acdnat=1441026530_b905b986d66adbb314dae69f8cf04a16" target="_blank" >http://ac.els-cdn.com/S0003491615000342/1-s2.0-S0003491615000342-main.pdf?_tid=01020544-4fe1-11e5-99ab-00000aacb360&acdnat=1441026530_b905b986d66adbb314dae69f8cf04a16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aop.2015.01.031" target="_blank" >10.1016/j.aop.2015.01.031</a>
Alternative languages
Result language
angličtina
Original language name
Role of information theoretic uncertainty relations in quantum theory
Original language description
Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Renyi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson-Schrodinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrodinger cat states. Again, improvement over both the RobertsonSchrodinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-07983S" target="_blank" >GA14-07983S: Vacuum structure in Quantum Field Theories</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Physics
ISSN
0003-4916
e-ISSN
—
Volume of the periodical
355
Issue of the periodical within the volume
Apr
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
87-114
UT code for WoS article
000353365900007
EID of the result in the Scopus database
2-s2.0-84923261054