One-parameter class of uncertainty relations based on entropy power
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00300648" target="_blank" >RIV/68407700:21340/16:00300648 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1103/PhysRevE.93.060104" target="_blank" >http://dx.doi.org/10.1103/PhysRevE.93.060104</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.93.060104" target="_blank" >10.1103/PhysRevE.93.060104</a>
Alternative languages
Result language
angličtina
Original language name
One-parameter class of uncertainty relations based on entropy power
Original language description
We use the concept of entropy power to derive a one-parameter class of information-theoretic uncertainty relations for pairs of conjugate observables in an infinite-dimensional Hilbert space. This class constitutes an infinite tower of higher-order statistics uncertainty relations, which allows one in principle to determine the shape of the underlying information-distribution function by measuring the relevant entropy powers. We illustrate the capability of this class by discussing two examples: superpositions of vacuum and squeezed states and the Cauchy-type heavy-tailed wave function.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-07983S" target="_blank" >GA14-07983S: Vacuum structure in Quantum Field Theories</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PHYSICAL REVIEW E
ISSN
2470-0045
e-ISSN
—
Volume of the periodical
93
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
—
UT code for WoS article
000378874100001
EID of the result in the Scopus database
2-s2.0-84977083725