The Aharonov-Bohm Hamiltonian with two vortices revisited
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00300669" target="_blank" >RIV/68407700:21340/16:00300669 - isvavai.cz</a>
Result on the web
<a href="https://ojs.cvut.cz/ojs/index.php/ap/article/view/3105" target="_blank" >https://ojs.cvut.cz/ojs/index.php/ap/article/view/3105</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/AP.2016.56.0224" target="_blank" >10.14311/AP.2016.56.0224</a>
Alternative languages
Result language
angličtina
Original language name
The Aharonov-Bohm Hamiltonian with two vortices revisited
Original language description
We consider an invariant quantum Hamiltonian H = -ΔLB + V in the L2 space based on a Riemannian manifold ˜M with a discrete symmetry group Γ. To any unitary representation Λ of Γ one can relate another operator on M = ˜M /Γ, called H_Λ, which formally corresponds to the same differential operator as H but which is determined by quasi-periodic boundary conditions. As originally observed by Schulman in theoretical physics and Sunada in mathematics, one can construct the propagator associated with H_Λ provided one knows the propagator associated with H. This approach is reviewed and demonstrated on a quantum model describing a charged particle on the plane with two Aharonov-Bohm vortices. The construction of the propagator is explained in full detail including all substantial intermediate steps.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-11058S" target="_blank" >GA13-11058S: Spectral analysis of operators and its applications in quantum mechanics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Polytechnica
ISSN
1210-2709
e-ISSN
—
Volume of the periodical
56
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
12
Pages from-to
224-235
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84977564450