On an extension of the Iwatsuka model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00300798" target="_blank" >RIV/68407700:21340/16:00300798 - isvavai.cz</a>
Result on the web
<a href="http://iopscience.iop.org/article/10.1088/1751-8113/49/36/365205/meta;jsessionid=C8FB106EFC65D3AB20C477F24024DCCD.c4.iopscience.cld.iop.org" target="_blank" >http://iopscience.iop.org/article/10.1088/1751-8113/49/36/365205/meta;jsessionid=C8FB106EFC65D3AB20C477F24024DCCD.c4.iopscience.cld.iop.org</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8113/49/36/365205" target="_blank" >10.1088/1751-8113/49/36/365205</a>
Alternative languages
Result language
angličtina
Original language name
On an extension of the Iwatsuka model
Original language description
We prove absolute continuity for an extended class of two-dimensional magnetic Hamiltonians that were initially studied by Iwatsuka. In particular, we add an electric field that is translation invariant in the same direction as the magnetic field. As an example, we study the effective Hamiltonian for a thin quantum layer in a homogeneous magnetic field.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-11058S" target="_blank" >GA13-11058S: Spectral analysis of operators and its applications in quantum mechanics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Volume of the periodical
49
Issue of the periodical within the volume
36
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
—
UT code for WoS article
000383512000008
EID of the result in the Scopus database
—