Spherical type integrable classical systems in a magnetic field
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F18%3A00321191" target="_blank" >RIV/68407700:21240/18:00321191 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/18:00321191
Result on the web
<a href="http://dx.doi.org/10.1088/1751-8121/aaae9b" target="_blank" >http://dx.doi.org/10.1088/1751-8121/aaae9b</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/aaae9b" target="_blank" >10.1088/1751-8121/aaae9b</a>
Alternative languages
Result language
angličtina
Original language name
Spherical type integrable classical systems in a magnetic field
Original language description
We show that four classes of second order spherical type integrable classical systems in a magnetic field exist in the Euclidean space E-3, and construct the Hamiltonian and two second order integrals of motion in involution for each of them. For one of the classes the Hamiltonian depends on four arbitrary functions of one variable. This class contains the magnetic monopole as a special case. Two further classes have Hamiltonians depending on one arbitrary function of one variable and four or six constants, respectively. The magnetic field in these cases is radial. The remaining system corresponds to a constant magnetic field and the Hamiltonian depends on two constants. Questions of superintegrability-i. e. the existence of further integrals-are discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
<a href="/en/project/GA17-11805S" target="_blank" >GA17-11805S: Superintegrable systems in magnetic fields in three spatial dimensions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Volume of the periodical
51
Issue of the periodical within the volume
13
Country of publishing house
GB - UNITED KINGDOM
Number of pages
24
Pages from-to
—
UT code for WoS article
000426960300001
EID of the result in the Scopus database
2-s2.0-85043511840