All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On connecting weyl-orbit functions to jacobi polynomials and multivariate (Anti)symmetric trigonometric functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00302327" target="_blank" >RIV/68407700:21340/16:00302327 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.14311/AP.2016.56.0283" target="_blank" >http://dx.doi.org/10.14311/AP.2016.56.0283</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14311/AP.2016.56.0283" target="_blank" >10.14311/AP.2016.56.0283</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On connecting weyl-orbit functions to jacobi polynomials and multivariate (Anti)symmetric trigonometric functions

  • Original language description

    The aim of this paper is to make an explicit link between the Weyl-orbit functions and the corresponding polynomials, on the one hand, and to several other families of special functions and orthogonal polynomials on the other. The cornerstone is the connection that is made between the one-variable orbit functions of A<inf>1</inf> and the four kinds of Chebyshev polynomials. It is shown that there exists a similar connection for the two-variable orbit functions of A<sup>2</sup> and a specific version of two variable Jacobi polynomials. The connection with recently studied G<inf>2</inf>-polynomials is established. Formulas for connection between the four types of orbit functions of B<inf>n</inf> or C<inf>n</inf> and the (anti)symmetric multivariate cosine and sine functions are explicitly derived.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/EE2.3.30.0034" target="_blank" >EE2.3.30.0034: Support of inter-sectoral mobility and quality enhancement of research teams at Czech Technical University in Prague</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Polytechnica

  • ISSN

    1805-2363

  • e-ISSN

  • Volume of the periodical

    56

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    8

  • Pages from-to

    283-290

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-84986206694