On connecting weyl-orbit functions to jacobi polynomials and multivariate (Anti)symmetric trigonometric functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00302327" target="_blank" >RIV/68407700:21340/16:00302327 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.14311/AP.2016.56.0283" target="_blank" >http://dx.doi.org/10.14311/AP.2016.56.0283</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/AP.2016.56.0283" target="_blank" >10.14311/AP.2016.56.0283</a>
Alternative languages
Result language
angličtina
Original language name
On connecting weyl-orbit functions to jacobi polynomials and multivariate (Anti)symmetric trigonometric functions
Original language description
The aim of this paper is to make an explicit link between the Weyl-orbit functions and the corresponding polynomials, on the one hand, and to several other families of special functions and orthogonal polynomials on the other. The cornerstone is the connection that is made between the one-variable orbit functions of A<inf>1</inf> and the four kinds of Chebyshev polynomials. It is shown that there exists a similar connection for the two-variable orbit functions of A<sup>2</sup> and a specific version of two variable Jacobi polynomials. The connection with recently studied G<inf>2</inf>-polynomials is established. Formulas for connection between the four types of orbit functions of B<inf>n</inf> or C<inf>n</inf> and the (anti)symmetric multivariate cosine and sine functions are explicitly derived.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0034" target="_blank" >EE2.3.30.0034: Support of inter-sectoral mobility and quality enhancement of research teams at Czech Technical University in Prague</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Polytechnica
ISSN
1805-2363
e-ISSN
—
Volume of the periodical
56
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
8
Pages from-to
283-290
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84986206694