All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Leaf classification from binary image via artificial intelligence

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00305211" target="_blank" >RIV/68407700:21340/16:00305211 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.biosystemseng.2015.12.007" target="_blank" >http://dx.doi.org/10.1016/j.biosystemseng.2015.12.007</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.biosystemseng.2015.12.007" target="_blank" >10.1016/j.biosystemseng.2015.12.007</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Leaf classification from binary image via artificial intelligence

  • Original language description

    The invariant recognition of 2D binary images is the main subject of the paper. Two methods for invariant pattern recognition based on 2D Fourier power spectrum with guaranteed translation invariance are proposed. First method introduce the features invariant to translation, scaling, rotation and mirroring (TSO invariance). The second method introduces the features invariant to general affine transform (A invariance). The methods are used to obtain TSO/A invariant spectra except of the rotation effect which are analysed on circular paths with fixed radii. Harmonic analysis of power fluctuations around paths generates Fourier coefficients and their square absolute values are used as TSO/A invariant descriptors. The proposed methods were tested on two large sets of 2D digital images of tree leaves. After TSO/A invariant processing of thresholded digital images, kernel Support Vector Machine or self-organizing neural network were used for leaf categorisation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    BIOSYSTEMS ENGINEERING

  • ISSN

    1537-5110

  • e-ISSN

  • Volume of the periodical

    142

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    83-100

  • UT code for WoS article

    000370100100006

  • EID of the result in the Scopus database

    2-s2.0-84953313019