All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Beta-expansions of rational numbers in quadratic Pisot bases

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00305590" target="_blank" >RIV/68407700:21340/18:00305590 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/18:10383191

  • Result on the web

    <a href="https://doi.org/10.4064/aa8260-11-2017" target="_blank" >https://doi.org/10.4064/aa8260-11-2017</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/aa8260-11-2017" target="_blank" >10.4064/aa8260-11-2017</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Beta-expansions of rational numbers in quadratic Pisot bases

  • Original language description

    We study rational numbers with purely periodic Rényi β-expansions. For bases β satisfying β2=aβ+b with b dividing a, we give a necessary and sufficient condition for all rational numbers p/qelement[0,1) with gcd(q,b)=1 to have a purely periodic β-expansion. We provide a simple algorithm for determining the infimum of p/qelement[0,1) with gcd(q,b)=1 and whose β-expansion is not purely periodic, which works for all quadratic Pisot numbers β.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Arithmetica

  • ISSN

    0065-1036

  • e-ISSN

    1730-6264

  • Volume of the periodical

    183

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    17

  • Pages from-to

    35-51

  • UT code for WoS article

    000427918800002

  • EID of the result in the Scopus database

    2-s2.0-85044079137