Bound-Preserving Reconstruction of Tensor Quantities for Remap in ALE Fluid Dynamics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00313457" target="_blank" >RIV/68407700:21340/18:00313457 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-91548-7_11" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-91548-7_11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-91548-7_11" target="_blank" >10.1007/978-3-319-91548-7_11</a>
Alternative languages
Result language
angličtina
Original language name
Bound-Preserving Reconstruction of Tensor Quantities for Remap in ALE Fluid Dynamics
Original language description
We analyze several new and existing approaches for limiting tensor quantities in the context of deviatoric stress remapping in an ALE numerical simulation of elastic flow. Remapping and limiting of the tensor component-by-component is shown to violate radial symmetry of derived variables such as elastic energy or force. Therefore, we have extended the symmetry-preserving Vector Image Polygon algorithm, originally designed for limiting vector variables. This limiter constrains the vector (in our case a vector of independent tensor components) within the convex hull formed by the vectors from surrounding cells - an equivalent of the discrete maximum principle in scalar variables. We compare this method with a limiter designed specifically for deviatoric stress limiting which aims to constrain the J2 invariant that is proportional to the specific elastic energy and scale the tensor accordingly. We also propose a method which involves remapping and limiting the J2 invariant independently using known scalar techniques. The deviatoric stress tensor is then scaled to match this remapped invariant, which guarantees conservation in terms of elastic energy.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
<a href="/en/project/GA14-21318S" target="_blank" >GA14-21318S: Lagrangian and ALE methods for mechanics of compressible fluids and elastic-plastic solids</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Theory, Numerics and Applications of Hyperbolic Problems II
ISBN
978-3-319-91547-0
ISSN
—
e-ISSN
—
Number of pages
13
Pages from-to
145-157
Publisher name
Springer
Place of publication
Basel
Event location
Aachen
Event date
Aug 1, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—