Second-invariant-preserving Remap of the 2D Deviatoric Stress Tensor in ALE Methods
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00321852" target="_blank" >RIV/68407700:21340/19:00321852 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.camwa.2018.06.012" target="_blank" >https://doi.org/10.1016/j.camwa.2018.06.012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.camwa.2018.06.012" target="_blank" >10.1016/j.camwa.2018.06.012</a>
Alternative languages
Result language
angličtina
Original language name
Second-invariant-preserving Remap of the 2D Deviatoric Stress Tensor in ALE Methods
Original language description
For numerical simulations of impact problems or fluid-solid interactions, the ALE (Arbitrary Lagrangian-Eulerian) approach is a useful tool due to its ability to keep the computational mesh smooth and moving with the fluid. The elastic-plastic extension of the compressible fluid model requires tensor variables for the description of non-volumetric (deviatoric) mechanical stress. While Lagrangian numerical schemes based on the evolution equation of the stress tensor are well developed, tensor remap is still a relatively unexplored territory. We propose a new approach to deviatoric stress remapping, where the second invariant J2 (a conservative scalar quantity related to the strain energy) is remapped independently of the tensor components. These are re-scaled to match the remapped invariant value, effectively using only the principal directions and eigenvalue ratio from the component-wise remap. This approach is frame invariant, preserves J2 invariant bounds and conserves the total invariant. We compare our method with component-based remapping using a simple synchronized limiter or a specialized stress tensor limiter described in the literature.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computers and Mathematics with Applications
ISSN
0898-1221
e-ISSN
1873-7668
Volume of the periodical
78
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
654-669
UT code for WoS article
000472128600023
EID of the result in the Scopus database
2-s2.0-85048788733