An upper bound on the minimal dispersion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00318423" target="_blank" >RIV/68407700:21340/18:00318423 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0885064X17301048" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0885064X17301048</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jco.2017.11.003" target="_blank" >10.1016/j.jco.2017.11.003</a>
Alternative languages
Result language
angličtina
Original language name
An upper bound on the minimal dispersion
Original language description
For 0<eps<1/2 and a natural number d> 1, let N be a natural number with N > 2^9 log(d) log(1/eps)^2 eps^(-2). We prove that there is a set of N points in the unit cube [0,1]^d, which intersects all axis-parallel boxes with volume eps. That is, the dispersion of this point set is bounded from above by eps.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Complexity
ISSN
0885-064X
e-ISSN
1090-2708
Volume of the periodical
45
Issue of the periodical within the volume
April
Country of publishing house
CH - SWITZERLAND
Number of pages
7
Pages from-to
120-126
UT code for WoS article
000425076800007
EID of the result in the Scopus database
2-s2.0-85035198003