Generating Functions for Orthogonal Polynomials of A_2, C_2 and G_2
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00326387" target="_blank" >RIV/68407700:21340/18:00326387 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3390/sym10080354" target="_blank" >http://dx.doi.org/10.3390/sym10080354</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym10080354" target="_blank" >10.3390/sym10080354</a>
Alternative languages
Result language
angličtina
Original language name
Generating Functions for Orthogonal Polynomials of A_2, C_2 and G_2
Original language description
The generating functions of fourteen families of generalized Chebyshev polynomials related to rank two Lie algebras A(2), C-2 and G(2) are explicitly developed. There exist two classes of the orthogonal polynomials corresponding to the symmetric and antisymmetric orbit functions of each rank two algebra. The Lie algebras G(2) and C-2 admit two additional polynomial collections arising from their hybrid character functions. The admissible shift of the weight lattice permits the construction of a further four shifted polynomial classes of C-2 and directly generalizes formation of the classical univariate Chebyshev polynomials of the third and fourth kinds. Explicit evaluating formulas for each polynomial family are derived and linked to the incomplete exponential Bell polynomials.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/7AMB16PL043" target="_blank" >7AMB16PL043: Symmetry methods for differential equations and their discretizations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry
ISSN
2073-8994
e-ISSN
2073-8994
Volume of the periodical
10
Issue of the periodical within the volume
8
Country of publishing house
CH - SWITZERLAND
Number of pages
23
Pages from-to
—
UT code for WoS article
000442486600056
EID of the result in the Scopus database
2-s2.0-85052516479