Eight kinds of orthogonal polynomials of the weyl group C 2 and the tau method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00339141" target="_blank" >RIV/68407700:21340/19:00339141 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-01156-7_36" target="_blank" >https://doi.org/10.1007/978-3-030-01156-7_36</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-01156-7_36" target="_blank" >10.1007/978-3-030-01156-7_36</a>
Alternative languages
Result language
angličtina
Original language name
Eight kinds of orthogonal polynomials of the weyl group C 2 and the tau method
Original language description
The four kinds of the classical Chebyshev polynomials are generalized to eight kinds of two-variable polynomials of the Weyl group C 2 . The admissible shift of the weight lattice and the four sign homomorphisms of C 2 generate eight types of the underlying hybrid character functions. The construction method of the resulting shifted four kinds of polynomials is detailed. The tau method for the approximation of solutions of differential equations using these two-variable polynomials is discussed.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/7AMB16PL043" target="_blank" >7AMB16PL043: Symmetry methods for differential equations and their discretizations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Trends in Mathematics
ISBN
978-3-030-01155-0
Number of pages of the result
8
Pages from-to
347-354
Number of pages of the book
402
Publisher name
Springer Nature
Place of publication
—
UT code for WoS chapter
—