Classical Field Theories from Hamiltonian Constraint: Local Symmetries and Static Gauge Fields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00328297" target="_blank" >RIV/68407700:21340/18:00328297 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007%2Fs00006-018-0865-8" target="_blank" >https://link.springer.com/article/10.1007%2Fs00006-018-0865-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00006-018-0865-8" target="_blank" >10.1007/s00006-018-0865-8</a>
Alternative languages
Result language
angličtina
Original language name
Classical Field Theories from Hamiltonian Constraint: Local Symmetries and Static Gauge Fields
Original language description
We consider the Hamiltonian constraint formulation of classical field theories, which treats spacetime and the space of fields symmetrically, and utilizes the concept of momentum multivector. The gauge field is introduced to compensate for non-invariance of the Hamiltonian under local transformations. It is a position-dependent linear mapping, which couples to the Hamiltonian by acting on the momentum multivector. We investigate symmetries of the ensuing gauged Hamiltonian, and propose a generic form of the gauge field strength. In examples we show how a generic gauge field can be specialized in order to realize gravitational and/or Yang-Mills interaction. Gauge field dynamics is not discussed in this article. Throughout, we employ the mathematical language of geometric algebra and calculus.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10303 - Particles and field physics
Result continuities
Project
<a href="/en/project/GA14-07983S" target="_blank" >GA14-07983S: Vacuum structure in Quantum Field Theories</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ADVANCES IN APPLIED CLIFFORD ALGEBRAS
ISSN
0188-7009
e-ISSN
1661-4909
Volume of the periodical
28
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
27
Pages from-to
—
UT code for WoS article
000431523800003
EID of the result in the Scopus database
2-s2.0-85046003168