The minimal k-dispersion of point sets in high dimensions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00327961" target="_blank" >RIV/68407700:21340/19:00327961 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jco.2018.10.001" target="_blank" >https://doi.org/10.1016/j.jco.2018.10.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jco.2018.10.001" target="_blank" >10.1016/j.jco.2018.10.001</a>
Alternative languages
Result language
angličtina
Original language name
The minimal k-dispersion of point sets in high dimensions
Original language description
In this manuscript we introduce and study an extended version of the minimal dispersion of point sets, which has recently attracted considerable attention. Given a set P_n={x_1,...,x_n}subset [0,1]^d and kin{0,...,n}, we define the k-dispersion to be the volume of the largest box amidst a point set containing at most k points. The minimal k-dispersion is then given by the infimum over all possible point sets of cardinality n. We provide both upper and lower bounds for the minimal k-dispersion that coincide with the known bounds for the classical minimal dispersion for a surprisingly large range of k’s.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00580S" target="_blank" >GA18-00580S: Function Spaces and Approximation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Complexity
ISSN
0885-064X
e-ISSN
1090-2708
Volume of the periodical
2019
Issue of the periodical within the volume
51
Country of publishing house
CH - SWITZERLAND
Number of pages
11
Pages from-to
68-78
UT code for WoS article
000458945200003
EID of the result in the Scopus database
2-s2.0-85055032455