A tight lower bound on the minimal dispersion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00374661" target="_blank" >RIV/68407700:21340/24:00374661 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/10467/114258" target="_blank" >http://hdl.handle.net/10467/114258</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2024.103945" target="_blank" >10.1016/j.ejc.2024.103945</a>
Alternative languages
Result language
angličtina
Original language name
A tight lower bound on the minimal dispersion
Original language description
We give a new lower bound for the minimal dispersion of a point set in the unit cube and its inverse function in the high dimension regime. This is done by considering only a very small class of test boxes, which allows us to reduce bounding the dispersion to a problem in extremal set theory. Specifically, we translate a lower bound on the size of r-cover-free families to a lower bound on the inverse of the minimal dispersion of a point set. The lower bound we obtain matches the recently obtained upper bound on the minimal dispersion up to logarithmic terms.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
1095-9971
Volume of the periodical
120
Issue of the periodical within the volume
103945
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
5
Pages from-to
—
UT code for WoS article
001222968000001
EID of the result in the Scopus database
2-s2.0-85188561780