All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On rotationally invariant integrable and superintegrable classical systems in magnetic fields with non-subgroup type integrals

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00331239" target="_blank" >RIV/68407700:21340/19:00331239 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1088/1751-8121/ab14c2" target="_blank" >https://doi.org/10.1088/1751-8121/ab14c2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1751-8121/ab14c2" target="_blank" >10.1088/1751-8121/ab14c2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On rotationally invariant integrable and superintegrable classical systems in magnetic fields with non-subgroup type integrals

  • Original language description

    The aim of the present article is to construct quadratically integrable three dimensional systems in non-vanishing magnetic fields which possess so-called non-subgroup type integrals. The presence of such integrals means that the system possesses a pair of integrals of motion in involution which are (at most) quadratic in momenta and whose leading order terms, that are necessarily elements of the enveloping algebra of the Euclidean algebra, are not quadratic Casimir operators of a chain of its subalgebras. By imposing in addition that one of the integrals has the leading order term L-z(2) we can consider three such commuting pairs: circular parabolic, oblate spheroidal and prolate spheroidal. We find all possible integrable systems possessing such structure of commuting integrals and describe their Hamiltonians and their integrals.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-11805S" target="_blank" >GA17-11805S: Superintegrable systems in magnetic fields in three spatial dimensions</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physics A: Mathematical and Theoretical

  • ISSN

    1751-8113

  • e-ISSN

    1751-8121

  • Volume of the periodical

    52

  • Issue of the periodical within the volume

    19

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    25

  • Pages from-to

  • UT code for WoS article

    000464398800001

  • EID of the result in the Scopus database

    2-s2.0-85065054813