Anomalous and traditional diffusion modelling in SOM learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00335997" target="_blank" >RIV/68407700:21340/19:00335997 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/10467/87000" target="_blank" >http://hdl.handle.net/10467/87000</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24425/acs.2019.131233" target="_blank" >10.24425/acs.2019.131233</a>
Alternative languages
Result language
angličtina
Original language name
Anomalous and traditional diffusion modelling in SOM learning
Original language description
The traditional self organizing map (SOM) is learned by Kohonen learning. The main disadvantage of this approach is in epoch based learning when the radius and rate of learning are decreasing functions of epoch index. The aim of study is to demonstrate advantages of diffusive learning in single epoch learning and other cases for both traditional and anomalous diffusion models. We also discuss the differences between traditional and anomalous learning in models and in quality of obtained SOM. The anomalous diffusion model leads to less accurate SOM which is in accordance to biological assumptions of normal diffusive processes in living nervous system. But the traditional Kohonen learning has been overperformed by novel diffusive learning approaches.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archives of Control Sciences
ISSN
2300-2611
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
4
Country of publishing house
PL - POLAND
Number of pages
19
Pages from-to
699-717
UT code for WoS article
000500305900008
EID of the result in the Scopus database
—