All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Diffusion Modelling Topographic Error of SOM Under Control

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00359863" target="_blank" >RIV/68407700:21340/22:00359863 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s11063-021-10660-1" target="_blank" >https://doi.org/10.1007/s11063-021-10660-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11063-021-10660-1" target="_blank" >10.1007/s11063-021-10660-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Diffusion Modelling Topographic Error of SOM Under Control

  • Original language description

    The traditional self-organized map (SOM) is learned by Kohonen learning and the most common 2-dimensional grids defining the structure of the map are the hexagonal grid and the rectangular grid. A novel model of self-organization is based on hexagonal grid and diffusion modeling in continuous space which is a good approximation of endorphins propagation and nitric oxide generation in the real brain. Therefore the structure of the system is described by neuron coordinates instead of neighborhood relationships in traditional SOM. The discussed neuron activation using the diffusion process and novel diffusive learning algorithm is based on this activation mentioned above. The novel structure and algorithm are demonstrated on simple examples and real economic applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neural Processing Letters

  • ISSN

    1370-4621

  • e-ISSN

    1573-773X

  • Volume of the periodical

    54

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

    835-852

  • UT code for WoS article

    000713078000001

  • EID of the result in the Scopus database

    2-s2.0-85118305719