Symbolic-Numerical Algorithm for Large Scale Calculations the Orthonormal SU(3) BM Basis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00348783" target="_blank" >RIV/68407700:21340/19:00348783 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-26831-2_7" target="_blank" >https://doi.org/10.1007/978-3-030-26831-2_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-26831-2_7" target="_blank" >10.1007/978-3-030-26831-2_7</a>
Alternative languages
Result language
angličtina
Original language name
Symbolic-Numerical Algorithm for Large Scale Calculations the Orthonormal SU(3) BM Basis
Original language description
In this paper we proposed a new symbolic, non-standard recursive and fast orthonormalization procedure of linearly independent vectors but as in other approaches not orthonormal based on the Gram-Schmidt orthonormalization algorithm. Our adaptation of the Gram-Schmidt orthonormalization procedure provide simple analytic formulas for the SU(3) Bargmann-Moshinsky basis orthonormalization coefficients and do not involve any square root operation on the expressions coming from the previous iterative computation steps. This distinct features of the proposed orthonormalization algorithm may make the large scale symbolic calculations feasible. We demonstrate efficiency of our procedure by benchmark large-scale calculations of the non-canonical BM basis with the highest weight vectors of SO(3) irreducible representations.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10303 - Particles and field physics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2019)
ISBN
978-3-030-26830-5
ISSN
0302-9743
e-ISSN
—
Number of pages
16
Pages from-to
91-106
Publisher name
Springer
Place of publication
Cham
Event location
Moscow
Event date
Aug 26, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000555272600007