All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Symbolic-Numeric Algorithm for Computing Orthonormal Basis of O(5) x SU(1,1) Group

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00348846" target="_blank" >RIV/68407700:21340/20:00348846 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-60026-6_12" target="_blank" >https://doi.org/10.1007/978-3-030-60026-6_12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-60026-6_12" target="_blank" >10.1007/978-3-030-60026-6_12</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Symbolic-Numeric Algorithm for Computing Orthonormal Basis of O(5) x SU(1,1) Group

  • Original language description

    We have developed a symbolic-numeric algorithm implemen-ted in Wolfram Mathematica to compute the orthonormal non-canonicalbases of symmetric irreducible representations of the O(5)xSU(1,1) andO(5)xSU(1,1) partner groups in the laboratory and intrinsic frames,respectively. The required orthonormal bases are labelled by the setof the number of bosonsN,seniorityλ, missing labelμdenoting themaximal number of boson triplets coupled to the angular momentumL= 0, and the angular momentum (L, M) quantum numbers using theconventional representations of a five-dimensional harmonic oscillator inthe laboratory and intrinsic frames. The proposed method uses a newsymbolic-numeric orthonormalization procedure based on the Gram–Schmidt orthonormalization algorithm. Efficiency of the elaborated pro-cedures and the code is shown by benchmark calculations of orthogonal-ization matrixO(5) andO(5) bases, and direct product with irreduciblerepresentations of SU(1,1) andSU(1,1) groups.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10304 - Nuclear physics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computer Algebra in Scientific Computing

  • ISBN

    978-3-030-60025-9

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    22

  • Pages from-to

    206-227

  • Publisher name

    Springer

  • Place of publication

    Basel

  • Event location

    Linz;

  • Event date

    Sep 14, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article