Symbolic-Numeric Algorithm for Computing Orthonormal Basis of O(5) x SU(1,1) Group
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00348846" target="_blank" >RIV/68407700:21340/20:00348846 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-60026-6_12" target="_blank" >https://doi.org/10.1007/978-3-030-60026-6_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-60026-6_12" target="_blank" >10.1007/978-3-030-60026-6_12</a>
Alternative languages
Result language
angličtina
Original language name
Symbolic-Numeric Algorithm for Computing Orthonormal Basis of O(5) x SU(1,1) Group
Original language description
We have developed a symbolic-numeric algorithm implemen-ted in Wolfram Mathematica to compute the orthonormal non-canonicalbases of symmetric irreducible representations of the O(5)xSU(1,1) andO(5)xSU(1,1) partner groups in the laboratory and intrinsic frames,respectively. The required orthonormal bases are labelled by the setof the number of bosonsN,seniorityλ, missing labelμdenoting themaximal number of boson triplets coupled to the angular momentumL= 0, and the angular momentum (L, M) quantum numbers using theconventional representations of a five-dimensional harmonic oscillator inthe laboratory and intrinsic frames. The proposed method uses a newsymbolic-numeric orthonormalization procedure based on the Gram–Schmidt orthonormalization algorithm. Efficiency of the elaborated pro-cedures and the code is shown by benchmark calculations of orthogonal-ization matrixO(5) andO(5) bases, and direct product with irreduciblerepresentations of SU(1,1) andSU(1,1) groups.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10304 - Nuclear physics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computer Algebra in Scientific Computing
ISBN
978-3-030-60025-9
ISSN
0302-9743
e-ISSN
—
Number of pages
22
Pages from-to
206-227
Publisher name
Springer
Place of publication
Basel
Event location
Linz;
Event date
Sep 14, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—