Classification of 6D Leibniz algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00342834" target="_blank" >RIV/68407700:21340/20:00342834 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1093/ptep/ptaa082" target="_blank" >https://doi.org/10.1093/ptep/ptaa082</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/ptep/ptaa082" target="_blank" >10.1093/ptep/ptaa082</a>
Alternative languages
Result language
angličtina
Original language name
Classification of 6D Leibniz algebras
Original language description
Leibniz algebras En were introduced as an algebraic structure underlying U-duality. Algebras E3 derived from Bianchi 3D Lie algebras are classified here. Two types of algebras are obtained: 6D Lie algebras that can be considered an extension of the semi-Abelian 4D Drinfel’d double and unique extensions of non-Abelian Bianchi algebras. For all of the algebras explicit forms of generalized frame fields are given.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10303 - Particles and field physics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Progress of Theoretical and Experimental Physics
ISSN
2050-3911
e-ISSN
2050-3911
Volume of the periodical
2020
Issue of the periodical within the volume
7
Country of publishing house
GB - UNITED KINGDOM
Number of pages
9
Pages from-to
"B01"-"B09"
UT code for WoS article
000593156400002
EID of the result in the Scopus database
2-s2.0-85091404734