Calibration Invariance of the MaxEnt Distribution in the Maximum Entropy Principle
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00347064" target="_blank" >RIV/68407700:21340/21:00347064 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3390/e23010096" target="_blank" >https://doi.org/10.3390/e23010096</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/e23010096" target="_blank" >10.3390/e23010096</a>
Alternative languages
Result language
angličtina
Original language name
Calibration Invariance of the MaxEnt Distribution in the Maximum Entropy Principle
Original language description
The maximum entropy principle consists of two steps: The first step is to find the distribution which maximizes entropy under given constraints. The second step is to calculate the corresponding thermodynamic quantities. The second part is determined by Lagrange multipliers' relation to the measurable physical quantities as temperature or Helmholtz free energy/free entropy. We show that for a given MaxEnt distribution, the whole class of entropies and constraints leads to the same distribution but generally different thermodynamics. Two simple classes of transformations that preserve the MaxEnt distributions are studied: The first case is a transform of the entropy to an arbitrary increasing function of that entropy. The second case is the transform of the energetic constraint to a combination of the normalization and energetic constraints. We derive group transformations of the Lagrange multipliers corresponding to these transformations and determine their connections to thermodynamic quantities. For each case, we provide a simple example of this transformation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GA19-16066S" target="_blank" >GA19-16066S: Nonlinear interactions and information transfer in complex systems with extreme events</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Entropy
ISSN
1099-4300
e-ISSN
1099-4300
Volume of the periodical
23
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
10
Pages from-to
—
UT code for WoS article
000610106600001
EID of the result in the Scopus database
2-s2.0-85099283807