Gelfand numbers of embeddings of Schatten classes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00353192" target="_blank" >RIV/68407700:21340/21:00353192 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00208-021-02203-9" target="_blank" >https://doi.org/10.1007/s00208-021-02203-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00208-021-02203-9" target="_blank" >10.1007/s00208-021-02203-9</a>
Alternative languages
Result language
angličtina
Original language name
Gelfand numbers of embeddings of Schatten classes
Original language description
Let 0 < p, q <= infinity and denote by S-p(N) and S-q(N) the corresponding Schatten classes of real N x N matrices. We study the Gelfand numbers of natural identities S-p(N) hooked right arrow S-q(N) between Schatten classes and prove asymptotically sharp bounds up to constants only depending on p and q. This extends classical results for finite-dimensional lp sequence spaces by E. Gluskin to the non-commutative setting and complements bounds previously obtained by B. Carl and A. Defant, A. Hinrichs and C. Michels, and J. Chavez-Dominguez and D. Kutzarova.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/8X20043" target="_blank" >8X20043: Time-Frequency Representations for Function Spaces (TIFREFUS)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Annalen
ISSN
0025-5831
e-ISSN
1432-1807
Volume of the periodical
380
Issue of the periodical within the volume
3-4
Country of publishing house
DE - GERMANY
Number of pages
31
Pages from-to
1563-1593
UT code for WoS article
000650111600001
EID of the result in the Scopus database
2-s2.0-85105868653