On Lieb-Thirring inequalities for one-dimensional non-self-adjoint Jacobi and Schrödinger operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00354764" target="_blank" >RIV/68407700:21340/21:00354764 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4171/JST/378" target="_blank" >https://doi.org/10.4171/JST/378</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/JST/378" target="_blank" >10.4171/JST/378</a>
Alternative languages
Result language
angličtina
Original language name
On Lieb-Thirring inequalities for one-dimensional non-self-adjoint Jacobi and Schrödinger operators
Original language description
We study to what extent Lieb–Thirring inequalities are extendable from self-adjoint to general (possibly non-self-adjoint) Jacobi and Schrödinger operators. Namely, we prove the conjecture of Hansmann and Katriel from [12] and answer another open question raised therein. The results are obtained by means of asymptotic analysis of eigenvalues of discrete Schrödinger operators with rectangular barrier potential and complex coupling. Applying the ideas in the continuous setting, we also solve a similar open problem for one-dimensional Schrödinger operators with complex-valued potentials published by Demuth, Hansmann, and Katriel in [5].
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-17749X" target="_blank" >GX20-17749X: New challenges for spectral theory: geometry, advanced materials and complex fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Spectral Theory
ISSN
1664-039X
e-ISSN
1664-0403
Volume of the periodical
11
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
23
Pages from-to
1391-1413
UT code for WoS article
000704993600017
EID of the result in the Scopus database
2-s2.0-85116829342