All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Lieb-Thirring inequalities for one-dimensional non-self-adjoint Jacobi and Schrödinger operators

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00354764" target="_blank" >RIV/68407700:21340/21:00354764 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4171/JST/378" target="_blank" >https://doi.org/10.4171/JST/378</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4171/JST/378" target="_blank" >10.4171/JST/378</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Lieb-Thirring inequalities for one-dimensional non-self-adjoint Jacobi and Schrödinger operators

  • Original language description

    We study to what extent Lieb–Thirring inequalities are extendable from self-adjoint to general (possibly non-self-adjoint) Jacobi and Schrödinger operators. Namely, we prove the conjecture of Hansmann and Katriel from [12] and answer another open question raised therein. The results are obtained by means of asymptotic analysis of eigenvalues of discrete Schrödinger operators with rectangular barrier potential and complex coupling. Applying the ideas in the continuous setting, we also solve a similar open problem for one-dimensional Schrödinger operators with complex-valued potentials published by Demuth, Hansmann, and Katriel in [5].

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GX20-17749X" target="_blank" >GX20-17749X: New challenges for spectral theory: geometry, advanced materials and complex fields</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Spectral Theory

  • ISSN

    1664-039X

  • e-ISSN

    1664-0403

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    23

  • Pages from-to

    1391-1413

  • UT code for WoS article

    000704993600017

  • EID of the result in the Scopus database

    2-s2.0-85116829342