All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Hilbert L-matrix

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00355249" target="_blank" >RIV/68407700:21340/22:00355249 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jfa.2022.109401" target="_blank" >https://doi.org/10.1016/j.jfa.2022.109401</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jfa.2022.109401" target="_blank" >10.1016/j.jfa.2022.109401</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Hilbert L-matrix

  • Original language description

    We analyze spectral properties of the Hilbert $L$-matrix [ left(frac{1}{max(m,n)+nu}right)_{m,n=0}^{infty} ] regarded as an operator $L_{nu}$ acting on $ell^{2}(N_{0})$, for $nuinR$, $nuneq0,-1,-2,dots$. The approach is based on a spectral analysis of the inverse of $L_{nu}$, which is an unbounded Jacobi operator whose spectral properties are deducible in terms of the unit argument ${}_{3}F_{2}$-hypergeometric functions. In particular, we give answers to two open problems concerning the operator norm of $L_{nu}$ published by L.~Bouthat and J.~Mashreghi in [emph{Oper. Matrices} 15, No.~1 (2021), 47--58]. In addition, several general aspects concerning the definition of an $L$-operator, its positivity, and Fredholm determinants are also discussed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GX20-17749X" target="_blank" >GX20-17749X: New challenges for spectral theory: geometry, advanced materials and complex fields</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Functional Analysis

  • ISSN

    0022-1236

  • e-ISSN

    1096-0783

  • Volume of the periodical

    282

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    46

  • Pages from-to

    1-46

  • UT code for WoS article

    000781239100016

  • EID of the result in the Scopus database

    2-s2.0-85123600386