On Diagonalizable Quantum Weighted Hankel Matrices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00363195" target="_blank" >RIV/68407700:21340/22:00363195 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-13851-5_25" target="_blank" >https://doi.org/10.1007/978-3-031-13851-5_25</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-13851-5_25" target="_blank" >10.1007/978-3-031-13851-5_25</a>
Alternative languages
Result language
angličtina
Original language name
On Diagonalizable Quantum Weighted Hankel Matrices
Original language description
A semi-infinite weighted Hawith the continuous q-Laguerre polynomials, is diagonalized. As an application, several new integral formulas for selected quantum orthogonal polynomials are deduced. In addition, an open research problem concerning a quantum Hilbert matrix is also mentioned,
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Toeplitz Operators and Random Matrices
ISBN
978-3-031-13850-8
Number of pages of the result
19
Pages from-to
585-603
Number of pages of the book
616
Publisher name
Springer
Place of publication
Cham
UT code for WoS chapter
—