All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Diagonalizable Quantum Weighted Hankel Matrices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00363195" target="_blank" >RIV/68407700:21340/22:00363195 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-13851-5_25" target="_blank" >https://doi.org/10.1007/978-3-031-13851-5_25</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-13851-5_25" target="_blank" >10.1007/978-3-031-13851-5_25</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Diagonalizable Quantum Weighted Hankel Matrices

  • Original language description

    A semi-infinite weighted Hawith the continuous q-Laguerre polynomials, is diagonalized. As an application, several new integral formulas for selected quantum orthogonal polynomials are deduced. In addition, an open research problem concerning a quantum Hilbert matrix is also mentioned,

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Toeplitz Operators and Random Matrices

  • ISBN

    978-3-031-13850-8

  • Number of pages of the result

    19

  • Pages from-to

    585-603

  • Number of pages of the book

    616

  • Publisher name

    Springer

  • Place of publication

    Cham

  • UT code for WoS chapter