All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Overtaking collisions of m shock waves and interactions of n(n -> infinity)-lump, m(m -> infinity)-solitons, τ(τ -> infinity)-periodic waves solutions to a generalized (2+1)-dimensional new KdV model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00381515" target="_blank" >RIV/68407700:21340/22:00381515 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.cjph.2022.06.002" target="_blank" >https://doi.org/10.1016/j.cjph.2022.06.002</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cjph.2022.06.002" target="_blank" >10.1016/j.cjph.2022.06.002</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Overtaking collisions of m shock waves and interactions of n(n -> infinity)-lump, m(m -> infinity)-solitons, τ(τ -> infinity)-periodic waves solutions to a generalized (2+1)-dimensional new KdV model

  • Original language description

    We consider a new generalized (2+1)-dimensional KdV model to investigate m (m -> infinity) shock and n (n -> infinity) breather wave solutions via two integral schemes. For the treatment of the model in an auxiliary equation approach, we first convert a nonlinear Burger equation to an ordinary differential equation (ODE) through a certain transformation. This ODE is used as an auxiliary equation of the method to obtain m (m -> infinity) shock wave solutions of the model. For different values of the parameters, we present head on and overtaking collisions with scattering ways of particle of the m (m -> infinity) shock wave solutions. We construct n soliton solutions of the model by using Hirota-bilinear approach. We obtain one lump type breather waves, interactions of one breather wave with a kink wave, interactions of two lump type breather waves by choosing complex conjugate values of free parameters in the n-soliton solutions of the model. Finally, we introduce two lemmas, a theorem and few corollaries on the hybrid interaction (n -> infinity lumps, m -> infinity solitons and tau -> oo periodic waves) solutions of the model. The theories and results are illustrated with adequate examples and suitable graphs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10300 - Physical sciences

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chinese Journal of Physics

  • ISSN

    0577-9073

  • e-ISSN

  • Volume of the periodical

    80

  • Issue of the periodical within the volume

    December

  • Country of publishing house

    TW - TAIWAN (PROVINCE OF CHINA)

  • Number of pages

    12

  • Pages from-to

    385-396

  • UT code for WoS article

    000896973500005

  • EID of the result in the Scopus database

    2-s2.0-85142435863