All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ON THE LONG-TIME ASYMPTOTIC BEHAVIOR OF THE MODIFIED KORTEWEG-DE VRIES EQUATION WITH STEP-LIKE INITIAL DATA

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422104" target="_blank" >RIV/00216208:11320/20:10422104 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=10mWN~by2X" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=10mWN~by2X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/19M1279964" target="_blank" >10.1137/19M1279964</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ON THE LONG-TIME ASYMPTOTIC BEHAVIOR OF THE MODIFIED KORTEWEG-DE VRIES EQUATION WITH STEP-LIKE INITIAL DATA

  • Original language description

    We study the long-time asymptotic behavior of the solution q(x, t), x is an element of R, t is an element of R+, of the modified Korteweg-de Vries equation (MKdV) q(t) + 6q(2)q(x) + q(xxx) = 0 with step-like initial datum q(x,0) -&gt; {( c- for x -&gt; -infinity,)(c+ for x -&gt; +infinity,) with c(-) &gt; c(+) &gt;= 0. For the step initial data q(x, 0) = {(c+) (c- for x &lt;= 0,)(for x &gt; 0) the solution develops an oscillatory region called the dispersive shock wave region that connects the two constant regions c(+) and c(-). We show that the dispersive shock wave is described by a modulated periodic traveling wave solution of the MKdV equation where the modulation parameters evolve according to a Whitham modulation equation. The oscillatory region is expanding within a cone in the (x,t) plane defined as -6c(-)(2) + 12c(+)(2) + &lt; x/t &lt; 4c(-)(2)+ 2c(+)(2), with t &gt;&gt; 1. For step-like initial data we show that the solution decomposes for long times into three main regions: (1) a region where solitons and breathers travel with positive velocities on a constant background c(+); (2) an expanding oscillatory region (that generically contains breathers); (3) a region of breathers traveling with negative velocities on the constant background c(-). When the oscillatory region does not contain breathers, the form of the asymptotic solution coincides up to a phase shift with the dispersive shock wave solution obtained for the step initial data. The phase shift depends on the solitons, the breathers, and the radiation of the initial data. This shows that the dispersive shock wave is a coherent structure that interacts in an elastic way with solitons, breathers, and radiation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Mathematical Analysis

  • ISSN

    0036-1410

  • e-ISSN

  • Volume of the periodical

    52

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    102

  • Pages from-to

    5892-5993

  • UT code for WoS article

    000600695200020

  • EID of the result in the Scopus database

    2-s2.0-85098773267