All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Study of 211Bi and 211Pb Recoils Release from 223Ra Labelled TiO2 Nanoparticles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00361904" target="_blank" >RIV/68407700:21340/23:00361904 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/ma16010343" target="_blank" >https://doi.org/10.3390/ma16010343</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ma16010343" target="_blank" >10.3390/ma16010343</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Study of 211Bi and 211Pb Recoils Release from 223Ra Labelled TiO2 Nanoparticles

  • Original language description

    Nanoparticles of various materials were proposed as carriers of nuclides in targeted alpha particle therapy to at least partially eliminate the nuclear recoil effect causing the unwanted release of radioactive progeny originating in nuclear decay series of so-called in vivo generators. Here, we report on the study of 211Pb and 211Bi recoils release from the 223Ra surface-labelled TiO2 nanoparticles in the concentration range of 0.01–1 mg/mL using two phase separation methods different in their kinetics in order to test the ability of progeny resorption. We have found significant differences between the centrifugation and the dialysis used for labelled NPs separation as well as that the release of 211Pb and 211Bi from the nanoparticles also depends on the NPs dispersion concentration. These findings support our previously proposed recoils-retaining mechanism of the progeny by their resorption on the NPs surface. At the 24 h time-point, the highest overall released progeny fractions were observed using centrifugation (4.0% and 13.5% for 211Pb and 211Bi, respectively) at 0.01 mg/mL TiO2 concentration. The lowest overall released fractions at the 24 h time-point (1.5% and 2.5% for 211Pb and 211Bi respectively) were observed using dialysis at 1 mg/mL TiO2 concentration. Our findings also indicate that the in vitro stability tests of such radionuclide systems designed to retain recoil-progeny may end up with biased results and particular care needs to be given to in vitro stability test experimental setup to mimic in vivo dynamic conditions. On the other hand, controlled and well-defined progeny release may enhance the alpha-emitter radiation therapy of some tumours.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials

  • ISSN

    1996-1944

  • e-ISSN

    1996-1944

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    7

  • Pages from-to

    1-7

  • UT code for WoS article

    000909025400001

  • EID of the result in the Scopus database

    2-s2.0-85145773256