All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tm, Ho:GGAG 2.1 µm laser diode-pumped at 1.7 µm

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00367177" target="_blank" >RIV/68407700:21340/23:00367177 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1117/12.2650269" target="_blank" >https://doi.org/10.1117/12.2650269</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1117/12.2650269" target="_blank" >10.1117/12.2650269</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tm, Ho:GGAG 2.1 µm laser diode-pumped at 1.7 µm

  • Original language description

    Holmium-doped solid state lasers are important direct sources of coherent radiation at 2 μm with applications in medicine, spectroscopy, LIDAR technologies, or conversion to mid-infrared wavelengths. Co-doping with Tm3+ sensitizer enables resonant diode-pumping at 1.7 μm with aim to reduce lasing threshold and thermal loading and to increase efficiency and obtainable wavelengths range. The Gd3(Ga,Al)5O12 (GGAG) crystal investigated in this work belongs to a class of mixed or disordered garnets. Such crystals are actively researched host material for rare earth ions due to broadening of dopant spectral lines and preserving good thermal and mechanical properties of crystalline garnet hosts. Spectroscopic and laser properties and their doping concentration dependence of Tm, Ho:GGAG crystal were investigated under 1.7 μm diode pumping. The laser material was Tm3+ and Ho3+ co-doped Gd3(Ga,Al)5O12. It was grown by Czocharlski method from melt with initial composition Gd2.91Ho0.012Tm0.075Ga2.7Al2.3O12. The grown crystal boule was cut into eight face-polished crystal samples 5.4 mm thick and 8–14 mm wide in diameter. Tm3+ and Ho3+ content of samples was between 2.1–3.2 at.% Tm/Gd and 0.3–0.5 at.% Ho/Gd. Crystals were pumped at room temperature by fiber-coupled (NA = 0.22, core diameter = 400 µm) 30 W laser diode emitting at 1.7 µm in quasi-continuous regime. A hemispherical laser cavity was tested with OC curvature of -150 mm and reflectivity of 96.5 % at 2090 nm. All lasers emitted at 2084–2090 nm range in the untuned setup. Threshold absorbed power was in 0.1–0.3 W range and generated beam corresponded to TEM00 mode. Both the highest efficiency w.r.t. absorbed power of 37 % and the highest output power amplitude of 3.8 W were obtained for 3.0 at.% (Tm/Gd) 0.5 at.% (Ho/Gd) crystal. The total wavelength tunability range of 1936–2111 nm was obtained, with lower concentration samples tended to result in broader continuous tuning curves.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proc. SPIE 12399, Solid State Lasers XXXII: Technology and Devices

  • ISBN

    9781510659032

  • ISSN

    0277-786X

  • e-ISSN

    1996-756X

  • Number of pages

    10

  • Pages from-to

  • Publisher name

    SPIE

  • Place of publication

    Bellingham (stát Washington)

  • Event location

    San Francisco, California

  • Event date

    Jan 28, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article