Optimal control systems for rolling stock
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00369789" target="_blank" >RIV/68407700:21340/23:00369789 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21720/23:00369789
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Optimal control systems for rolling stock
Original language description
In this article, we will focus on mathematic approaches to optimal control systems for rolling stock. We will discuss several formulations of optimal control problems for trains and trams. We will then look into optimising the energy consumption under various constraining conditions, including the available power and force, time schedule, and speed limits. We will present the tram optimal energy control using reinforcement learning and the advantages of this machine learning approach for vehicle optimization in stochastic environments, e.g. in the city. Simulation results will be presented.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
SPMS 2022/23 Stochastic and Physical Monitoring Systems, Proceedings of the international conferences
ISBN
978-80-01-07250-9
ISSN
—
e-ISSN
—
Number of pages
11
Pages from-to
53-63
Publisher name
České vysoké učení technické v Praze
Place of publication
Praha
Event location
Sloup v Čechách
Event date
Jun 26, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—