All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An Inverse Spectral Problem for Non-Self-Adjoint Jacobi Matrices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00372144" target="_blank" >RIV/68407700:21340/24:00372144 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1093/imrn/rnad314" target="_blank" >https://doi.org/10.1093/imrn/rnad314</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/imrn/rnad314" target="_blank" >10.1093/imrn/rnad314</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An Inverse Spectral Problem for Non-Self-Adjoint Jacobi Matrices

  • Original language description

    We consider the class of bounded symmetric Jacobi matrices $J$ with positive off-diagonal elements and complex diagonal elements. With each matrix $J$ from this class, we associate the spectral data, which consists of a pair $(nu ,psi )$. Here $nu $ is the spectral measure of $|J|=sqrt {J<^>{*}J}$ and $psi $ is a phase function on the real line satisfying $|psi |leq 1$ almost everywhere with respect to the measure $nu $. Our main result is that the map from $J$ to the pair $(nu ,psi )$ is a bijection between our class of Jacobi matrices and the set of all spectral data.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GX20-17749X" target="_blank" >GX20-17749X: New challenges for spectral theory: geometry, advanced materials and complex fields</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Mathematics Research Notices

  • ISSN

    1073-7928

  • e-ISSN

    1687-0247

  • Volume of the periodical

    2024

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    34

  • Pages from-to

    6106-6139

  • UT code for WoS article

    001140816800001

  • EID of the result in the Scopus database

    2-s2.0-85185609763