All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Periodicity and pure periodicity in alternate base systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00375681" target="_blank" >RIV/68407700:21340/24:00375681 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s40993-024-00542-5" target="_blank" >https://doi.org/10.1007/s40993-024-00542-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s40993-024-00542-5" target="_blank" >10.1007/s40993-024-00542-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Periodicity and pure periodicity in alternate base systems

  • Original language description

    We study the Cantor real base numeration system which is a common generalization of two positional systems, namely the Cantor system with a sequence of integer bases and the Rényi system with one real base. We focus on the case of an alternate base B given by a purely periodic sequence of real numbers greater than 1. We answer an open question of Charlier et al. (J Number Theory 254:184–198, 2024) on the set of numbers with eventually periodic B-expansions. We also investigate for which bases all sufficiently small rationals have a purely periodic B-expansion. We show that a necessary condition for this phenomenon is that (where p is the period-length of B) is a Pisot or a Salem unit. We also provide a sufficient condition. We thus generalize the results known for the Rényi numeration system, i.e. for the case when p=1. We provide a class of alternate bases in which all rational numbers in the interval [0,1) have a purely periodic B-expansion.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10100 - Mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Research in Number Theory

  • ISSN

    2363-9555

  • e-ISSN

    2363-9555

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

  • UT code for WoS article

    001246592200004

  • EID of the result in the Scopus database

    2-s2.0-85195483120