so(3) c su(3) revisited
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00381398" target="_blank" >RIV/68407700:21340/24:00381398 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.14311/AP.2024.64.0336" target="_blank" >https://doi.org/10.14311/AP.2024.64.0336</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/AP.2024.64.0336" target="_blank" >10.14311/AP.2024.64.0336</a>
Alternative languages
Result language
angličtina
Original language name
so(3) c su(3) revisited
Original language description
This paper reproduces the result of Elliot, namely that the irreducible finite dimensional representation of the Lie algebra su(3) of highest weight (m, n) is decomposed according to the embedding so(3) c su(3). First, a realisation (a representation in terms of vector fields) of the Lie algebra su(3) is constructed on a space of polynomials of three variables. The special polynomial basis of the representation space is given. In this basis, we find the highest weight vectors of the representation of the Lie subalgebra so(3) and in this way the representation space is decomposed to the direct sum of invariant subspaces. The process is illustrated by the example of the decomposition of the representation of highest weight (2, 2). As an additional result, the generating function of the decomposition is given.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Polytechnica
ISSN
1210-2709
e-ISSN
1805-2363
Volume of the periodical
64
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
5
Pages from-to
336-340
UT code for WoS article
001309868700004
EID of the result in the Scopus database
2-s2.0-85204433139