All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

so(3) c su(3) revisited

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00381398" target="_blank" >RIV/68407700:21340/24:00381398 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.14311/AP.2024.64.0336" target="_blank" >https://doi.org/10.14311/AP.2024.64.0336</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14311/AP.2024.64.0336" target="_blank" >10.14311/AP.2024.64.0336</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    so(3) c su(3) revisited

  • Original language description

    This paper reproduces the result of Elliot, namely that the irreducible finite dimensional representation of the Lie algebra su(3) of highest weight (m, n) is decomposed according to the embedding so(3) c su(3). First, a realisation (a representation in terms of vector fields) of the Lie algebra su(3) is constructed on a space of polynomials of three variables. The special polynomial basis of the representation space is given. In this basis, we find the highest weight vectors of the representation of the Lie subalgebra so(3) and in this way the representation space is decomposed to the direct sum of invariant subspaces. The process is illustrated by the example of the decomposition of the representation of highest weight (2, 2). As an additional result, the generating function of the decomposition is given.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Polytechnica

  • ISSN

    1210-2709

  • e-ISSN

    1805-2363

  • Volume of the periodical

    64

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    5

  • Pages from-to

    336-340

  • UT code for WoS article

    001309868700004

  • EID of the result in the Scopus database

    2-s2.0-85204433139