All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Classification of EEG graphoelements with supervised and unsupervised learning algorithms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F14%3A00222998" target="_blank" >RIV/68407700:21460/14:00222998 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S1388245713012789" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1388245713012789</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.clinph.2013.12.042" target="_blank" >10.1016/j.clinph.2013.12.042</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Classification of EEG graphoelements with supervised and unsupervised learning algorithms

  • Original language description

    The electroencephalogram (EEG) provides markers of brain disturbances in the field of epilepsy. In short duration EEG data recordings, the epileptic graphoelements may not manifest. The visual analysis of lengthy signals is a tedious task. It is necessary to track the EEG activity on the computer screen and to detect the epileptiform graphoelements and the other pathological activity. The automation of the process is needed. We will compare the EEG wave classification both by supervised and unsupervisedlearning algorithms. The feasibility to detect the changes in the microstructure of epileptic activity will be verified. The procedure is based on multichannel adaptive segmentation, feature extraction and classification of graphoelements. To take intoaccount the non-stationary behavior of the signal, the features were extracted from segments detected by adaptive segmentation. The features included amplitude variance, parameters describing duration, number of segments, power in the fre

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů