All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Active Learning Approach for EEG Classification using Neural Networks: A review

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F19%3A00336838" target="_blank" >RIV/68407700:21460/19:00336838 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/EHB47216.2019.8970017" target="_blank" >https://doi.org/10.1109/EHB47216.2019.8970017</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/EHB47216.2019.8970017" target="_blank" >10.1109/EHB47216.2019.8970017</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Active Learning Approach for EEG Classification using Neural Networks: A review

  • Original language description

    Labelling of electroencephalography (EEG) recordings for further classification and analysis can be time consuming for a physician (expert), especially for long term monitoring (e.g. sleep stages). Active learning approach using machine learning classifiers seems to be a promising method for semi-automated label acquisition with expert in the loop as it can radically decrease the necessary training set needed for neural network to learn. A critical review of current state-of-the-art in active learning approach for EEG classification by neural networks is the goal of this paper. Studies using active learning in EEG address detection of specific graphoelements (artifacts, VEPs, epileptic spikes) or stages (sleep stages, drowsiness) or they optimized brain computer interface (BCI). Amount of the training set in the studies is reduced compared to a common classifier used as a golden standard (reduction differs from 40% to 80% of the set size).

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

    <a href="/en/project/GA17-20480S" target="_blank" >GA17-20480S: Temporal context in analysis of long-term non-stationary multidimensional signal</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IEEE E-HEALTH AND BIOENGINEERING EHB 2019

  • ISBN

    978-1-7281-2603-6

  • ISSN

  • e-ISSN

    2575-5145

  • Number of pages

    4

  • Pages from-to

  • Publisher name

    Gr. T. Popa University of Medicine and Pharmacy

  • Place of publication

    Iasi

  • Event location

    Iasi

  • Event date

    Nov 21, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000558648300147