Detection of Sleep Stages in Temporal Profiles in Neonatal EEG—k-NN versus k-Means Approach: A Feasibility Study
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F19%3A00321988" target="_blank" >RIV/68407700:21460/19:00321988 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21730/19:00321988
Result on the web
<a href="http://dx.doi.org/10.1007/978-981-10-9038-7_96" target="_blank" >http://dx.doi.org/10.1007/978-981-10-9038-7_96</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-10-9038-7_96" target="_blank" >10.1007/978-981-10-9038-7_96</a>
Alternative languages
Result language
angličtina
Original language name
Detection of Sleep Stages in Temporal Profiles in Neonatal EEG—k-NN versus k-Means Approach: A Feasibility Study
Original language description
The aim of this feasibility study is to experimentally verify the detection of changes of sleep stages in neonates with our proposed semi-automated approach using k-NN classification in comparison with a fully automated approach using simple k-means cluster analysis for classification (instead of k-NN). Our semi-automatic approach uses the k-NN classifier trained on etalons (prototypes) created by semi-automated etalons extraction (k-means for etalons suggestion and expert-in-the-loop for verification). Both methods are compared to labelling of sleep stages made by an experienced physician Dr. K. Paul. An EEG recording of full-term neonate is chosen from group of EEG recordings: full-term and preterm neonates recorded from eight electrodes positioned in standard conditions. The EEG recording is digitally preprocessed by mean-removal filter (no other filters are applied) and segmented adaptively. For each segment, 24 features are extracted and send to two classification processes: k-means and k-NN. Classified segments are plotted in temporal profiles (class membership in time) that are analysed for sleep stages using our method of creating a single detection curve from all channels and a threshold is applied on this detection curve to detect sleep stages.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20601 - Medical engineering
Result continuities
Project
<a href="/en/project/GA17-20480S" target="_blank" >GA17-20480S: Temporal context in analysis of long-term non-stationary multidimensional signal</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
World Congress on Medical Physics and Biomedical Engineering 2018 (Vol. 2)
ISBN
978-981-10-9037-0
ISSN
1680-0737
e-ISSN
—
Number of pages
5
Pages from-to
523-527
Publisher name
Springer Nature Singapore Pte Ltd.
Place of publication
—
Event location
Prague
Event date
Jun 3, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000449742700096