Detection of sleep stages in neonatal EEG records
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F17%3A00315842" target="_blank" >RIV/68407700:21460/17:00315842 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21730/17:00315842 RIV/00023752:_____/17:43919192
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-981-10-5122-7_63" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-10-5122-7_63</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-10-5122-7_63" target="_blank" >10.1007/978-981-10-5122-7_63</a>
Alternative languages
Result language
angličtina
Original language name
Detection of sleep stages in neonatal EEG records
Original language description
The aim of this study is the detection of changes in sleep stages in EEG recordings in full-term and preterm newborns. We use a k-NN algorithm as a method of classification. The novelty of our approach lies in semi-automatic etalon (prototype) selection with combination of temporal analysis for sleep stages detection. The semi-automated etalon extraction includes the k-means algorithm for etalons suggestion and an expert-in-the-loop for verification of these etalons. The semi-automated approach improves significantly the time spent on the etalon selection (extraction) by the expert. The whole procedure of EEG signal processing consists of adaptive segmentation, feature extraction, semi-automatic etalon selection using k-means and expert-in-the-loop, classification using k-NN algorithm and temporal profile analysis that is able to detect the neonatal sleep stages for the full-term and even for the preterm neonates, which makes it a unique detection method.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA17-20480S" target="_blank" >GA17-20480S: Temporal context in analysis of long-term non-stationary multidimensional signal</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
IFMBE Proceedings
ISBN
978-981-10-5121-0
ISSN
1680-0737
e-ISSN
1433-9277
Number of pages
4
Pages from-to
250-253
Publisher name
Springer Nature Singapore Pte Ltd.
Place of publication
—
Event location
Tampere
Event date
Jun 11, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—