All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Detection of sleep stages in neonatal EEG records

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F17%3A00315842" target="_blank" >RIV/68407700:21460/17:00315842 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21730/17:00315842 RIV/00023752:_____/17:43919192

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-981-10-5122-7_63" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-10-5122-7_63</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-10-5122-7_63" target="_blank" >10.1007/978-981-10-5122-7_63</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Detection of sleep stages in neonatal EEG records

  • Original language description

    The aim of this study is the detection of changes in sleep stages in EEG recordings in full-term and preterm newborns. We use a k-NN algorithm as a method of classification. The novelty of our approach lies in semi-automatic etalon (prototype) selection with combination of temporal analysis for sleep stages detection. The semi-automated etalon extraction includes the k-means algorithm for etalons suggestion and an expert-in-the-loop for verification of these etalons. The semi-automated approach improves significantly the time spent on the etalon selection (extraction) by the expert. The whole procedure of EEG signal processing consists of adaptive segmentation, feature extraction, semi-automatic etalon selection using k-means and expert-in-the-loop, classification using k-NN algorithm and temporal profile analysis that is able to detect the neonatal sleep stages for the full-term and even for the preterm neonates, which makes it a unique detection method.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA17-20480S" target="_blank" >GA17-20480S: Temporal context in analysis of long-term non-stationary multidimensional signal</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IFMBE Proceedings

  • ISBN

    978-981-10-5121-0

  • ISSN

    1680-0737

  • e-ISSN

    1433-9277

  • Number of pages

    4

  • Pages from-to

    250-253

  • Publisher name

    Springer Nature Singapore Pte Ltd.

  • Place of publication

  • Event location

    Tampere

  • Event date

    Jun 11, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article