All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Application of artificial neural networks for analyses of EEG record with semi-automated etalons extraction: A pilot study

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F16%3A43915395" target="_blank" >RIV/00023752:_____/16:43915395 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21230/16:00304845 RIV/68407700:21460/16:00304845 RIV/68407700:21730/16:00304845 RIV/61989100:27240/16:86097740

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-319-44188-7_7" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-44188-7_7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-44188-7_7" target="_blank" >10.1007/978-3-319-44188-7_7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Application of artificial neural networks for analyses of EEG record with semi-automated etalons extraction: A pilot study

  • Original language description

    Application of artificial neural network (ANN) classification - multilayer perceptron (MLP) with simulated annealing for initialization and genetic algorithm for weight optimization on multi-channel EEG record is presented here. The novelty of the approach lies in the semi-automated etalon extraction. The etalons are suggested by the k-means algorithm and verified/edited by an expert. The whole process of EEG record consists of multichannel adaptive segmentation, feature extraction from segments, semi-automatic process of etalons extraction by the k-means cluster analysis leading to color segment identification and continuing with manual choice of segments for etalons by the expert and feature extraction of chosen etalons. Subsequent classification by ANN leads to unique color identification of segments in the EEG record and additionally in temporal profile. Our goal is to help the physician by mimetic software because the examination of long multichannel EEG is a tedious work.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    17th International Conference on Engineering Applications of Neural Networks, EANN 2016; Aberdeen; United Kingdom; 2 September 2016 through 5 September 2016

  • ISBN

    978-3-319-44187-0

  • ISSN

    1865-0929

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    94-107

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Aberdeen; United Kingdo

  • Event date

    Sep 2, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article