All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Detecting Sleep Spindles Using Entropy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F21%3A00344976" target="_blank" >RIV/68407700:21460/21:00344976 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21730/21:00344976 RIV/00023752:_____/21:43920491

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-64610-3_41" target="_blank" >https://doi.org/10.1007/978-3-030-64610-3_41</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-64610-3_41" target="_blank" >10.1007/978-3-030-64610-3_41</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Detecting Sleep Spindles Using Entropy

  • Original language description

    Sleep spindles are bursts of brain activity during sleep. They occur during the NREM2 stage of sleep and appear as fluctuations in electric recordings, looking like yarn spindles. This increase of activity can be detected by complexity measures, the most popular of which are the entropy based estimations. In this paper, we use entropy to measure the brain activity during sleep spindle and non-spindle periods and discriminate them employing the machine learning technology. Two are the main outcomes of this work: a) we show that it is possible to achieve remarkable classification performance when detecting sleep spindles with entropy based measures and machine learning techniques, presenting classification accuracy of more than 95 % and (b) we report that bubble entropy, a recently introduced definition of entropy, presented the lowest p-value of all examined features.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA17-20480S" target="_blank" >GA17-20480S: Temporal context in analysis of long-term non-stationary multidimensional signal</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    8th European Medical and Biological Engineering Conference

  • ISBN

    978-3-030-64609-7

  • ISSN

    1680-0737

  • e-ISSN

    1433-9277

  • Number of pages

    7

  • Pages from-to

    356-362

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Portorož

  • Event date

    Nov 29, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article