Evaluation of Leading Smartwatches for the Detection of Hypoxemia: Comparison to Reference Oximeter
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F23%3A00369378" target="_blank" >RIV/68407700:21460/23:00369378 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3390/s23229164" target="_blank" >https://doi.org/10.3390/s23229164</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s23229164" target="_blank" >10.3390/s23229164</a>
Alternative languages
Result language
angličtina
Original language name
Evaluation of Leading Smartwatches for the Detection of Hypoxemia: Comparison to Reference Oximeter
Original language description
Although smartwatches are not considered medical devices, experimental validation of their accuracy in detecting hypoxemia is necessary due to their potential use in monitoring conditions manifested by a prolonged decrease in peripheral blood oxygen saturation (SpO2), such as chronic obstructive pulmonary disease, sleep apnea syndrome, and COVID-19, or at high altitudes, e.g., during sport climbing, where the use of finger-sensor-based pulse oximeters may be limited. The aim of this study was to experimentally compare the accuracy of SpO2 measurement of popular smartwatches with a clinically used pulse oximeter according to the requirements of ISO 80601-2-61. Each of the 18 young and healthy participants underwent the experimental assessment three times in randomized order—wearing Apple Watch 8, Samsung Galaxy Watch 5, or Withings ScanWatch—resulting in 54 individual experimental assessments and complete datasets. The accuracy of the SpO2 measurements was compared to that of the Radical-7 (Masimo Corporation, Irvine, CA, USA) during short-term hypoxemia induced by consecutive inhalation of three prepared gas mixtures with reduced oxygen concentrations (14%, 12%, and 10%). All three smartwatch models met the maximum acceptable root-mean-square deviation (<=4%) from the reference measurement at both normal oxygen levels and induced desaturation with SpO2 less than 90%. Apple Watch 8 reached the highest reliability due to its lowest mean bias and root-mean-square deviation, highest Pearson correlation coefficient, and accuracy in detecting hypoxemia. Our findings support the use of smartwatches to reliably detect hypoxemia in situations where the use of standard finger pulse oximeters may be limited.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20601 - Medical engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Sensors
ISSN
1424-8220
e-ISSN
1424-8220
Volume of the periodical
23
Issue of the periodical within the volume
22
Country of publishing house
CH - SWITZERLAND
Number of pages
12
Pages from-to
1-12
UT code for WoS article
001113996700001
EID of the result in the Scopus database
—