Distributed state estimation and fault diagnosis using reduced sensitivity to neighbor estimates with application to building control
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21720%2F23%3A00363506" target="_blank" >RIV/68407700:21720/23:00363506 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/23:00363506
Result on the web
<a href="https://doi.org/10.1016/j.jfranklin.2022.10.017" target="_blank" >https://doi.org/10.1016/j.jfranklin.2022.10.017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfranklin.2022.10.017" target="_blank" >10.1016/j.jfranklin.2022.10.017</a>
Alternative languages
Result language
angličtina
Original language name
Distributed state estimation and fault diagnosis using reduced sensitivity to neighbor estimates with application to building control
Original language description
This paper proposes solutions that reduce the inaccuracy of distributed state estimation and consequent performance deterioration of distributed model predictive control caused by faults and inaccurate models. A distributed state estimation method for large-scale systems is introduced. A local state estimation approach considers the uncertainty of neighbor estimates, which can improve the state estimation accuracy, whereas it keeps a low network communication burden. The method also incorporates the uncertainty of model parameters which improves the performance when using simplified models. The proposed method is extended with multiple models and estimates the probability of nominal and fault behavior models, which creates a distributed fault detection and diagnosis method. An example with application to the building heating control demonstrates that the proposed algorithm provides accurate state estimates to a controller and detects local or global faults while using simplified models.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/TK01020024" target="_blank" >TK01020024: Hydronics 4.0</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the Franklin Institute
ISSN
0016-0032
e-ISSN
1879-2693
Volume of the periodical
360
Issue of the periodical within the volume
12
Country of publishing house
GB - UNITED KINGDOM
Number of pages
24
Pages from-to
9216-9239
UT code for WoS article
001047055500001
EID of the result in the Scopus database
2-s2.0-85143546044