Compact ConvNets with Ternary Weights and Binary Activations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F18%3A00318883" target="_blank" >RIV/68407700:21730/18:00318883 - isvavai.cz</a>
Result on the web
<a href="http://cmp.felk.cvut.cz/cvww2018/papers/18.pdf" target="_blank" >http://cmp.felk.cvut.cz/cvww2018/papers/18.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Compact ConvNets with Ternary Weights and Binary Activations
Original language description
Compact convolutional neural network (CNN) architectures with ternary weights and binary activations is a combination of methods suitable for making neural networks more efficient. We show that the combination of ternary weights and depthwise separable convolutions on the CIFAR-10 benchmark can yield a small neural network of size $32 kB$ and $83.70%$ test accuracy. We present a novel dithering binary activation which we expected to improve accuracy of networks with binary activations by randomizing quantization error. This work presents the outcome of our experiments which show that it brings only mild improvements. A compact SqueezeNet network with ternary weights and binary activations is more accurate than the same network with binary weights. Nevertheless, the accuracy gap to its full precision variant remains large.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF15_003%2F0000470" target="_blank" >EF15_003/0000470: Robotics 4 Industry 4.0</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 23rd Computer Vision Winter Workshop
ISBN
978-80-270-3395-9
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
—
Publisher name
Czech Society for Cybernetics and Informatics
Place of publication
Praha
Event location
Český Krumlov
Event date
Feb 5, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—